Correlation Analysis between Regulatory Sequence Motifs and Expression Profiles by Kernel CCA

نویسندگان

  • Je-Keun Rhee
  • Je-Gun Joung
  • Jeong-Ho Chang
  • Byoung-Tak Zhang
چکیده

Transcription factors regulate gene expression by binding to gene upstream region. Each transcription factor has the specific binding site in promoter region. So the analysis of gene upstream sequence is necessary for understanding regulatory mechanism of genes, under a plausible idea that assumption that DNA sequence motif profiles are closely related to gene expression behaviors of the corresponding genes. Here, we present an effective approach to the analysis of the relation between gene expression profiles and gene upstream sequences on the basis of kernel canonical correlation analysis (kernel CCA). Kernel CCA is a useful method for finding relationships underlying between two different data sets. In the application to a yeast cell cycle data set, it is shown that gene upstream sequence profile is closely related to gene expression patterns in terms of canonical correlation scores. By the further analysis of the contributing values or weights of sequence motifs in the construction of a pair of sequence motif profiles and expression profiles, we show that the proposed method can identify significant DNA sequence motifs involved with some specific gene expression patterns, including some well known motifs and those putative, in the process of the yeast cell cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SArKS: Discovering gene expression regulatory motifs and domains by suffix array kernel smoothing

Experiments designed to assess differential gene expression represent a rich resource for discovering how DNA regulatory sequences influence transcription. Results derived from such experiments are usually quantified as continuous scores, such as fold changes, test statistics and p-values. We present a de novo motif discovery algorithm, SArKS, which uses a nonparametric kernel smoothing approac...

متن کامل

The Geometry Of Kernel Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a classical multivariate method concerned with describing linear dependencies between sets of variables. After a short exposition of the linear sample CCA problem and its analytical solution, the article proceeds with a detailed characterization of its geometry. Projection operators are used to illustrate the relations between canonical vectors and variat...

متن کامل

An Operator Viewpoint to Analysis of Conditional Kernel Canonical Correlation

Kernel canonical correlation analysis (CCA) is a nonlinear extension of CCA, which aims at extracting information shared by two random variables. In this paper, a new notion of conditional kernel CCA is introduced. Conditional kernel CCA aims at analyzing the effect of variable Z to the dependence between X and Y . Rates of convergence of an empirical normalized conditional cross-covariance ope...

متن کامل

Learning “graph-mer” Motifs that Predict Gene Expression Trajectories in Development

A key problem in understanding transcriptional regulatory networks is deciphering what cis regulatory logic is encoded in gene promoter sequences and how this sequence information maps to expression. A typical computational approach to this problem involves clustering genes by their expression profiles and then searching for overrepresented motifs in the promoter sequences of genes in a cluster...

متن کامل

Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles

The combination of genome-wide expression patterns and full genome sequences offers a great opportunity to further our understanding of the mechanisms and logic of transcriptional regulation. Many methods have been described that identify sequence motifs enriched in transcription control regions of genes that share similar gene expression patterns. Here we present an alternative approach that e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005